

UNIVERSITY OF NORTH BENGAL

B.Sc. Programme 4th Semester Examination, 2023

# DSC1/2/3-P4-STATISTICS

## METHODS OF STATISTICAL INFERENCE

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

## **GROUP-A**

- 1. Answer any *five* from the following:
  - (a) What is analysis of variance?
  - (b) What is level of significance?
  - (c) What do you mean by critical region?
  - (d) What do you mean by estimation?
  - (e) What is power of a test?
  - (f) What is large sample test?
  - (g) What is confidence interval?
  - (h) What is efficient estimator?

## **GROUP-B**

- 2. Answer any *three* of the following:
  - (a) A simple random sample  $(X_1, X_2, X_3, X_4)$  of size 4 is drawn from an infinite population with mean  $\mu$  and variance  $\sigma^2$ . Given the two estimators of  $\mu$  as follows:

$$T_1 = \frac{x_1 + 2x_2 + 3x_3 + 4x_4}{10}$$
,  $T_2 = \frac{x_1 + x_2}{3} + \frac{x_3 + x_4}{6}$ 

Which one is better? Why?

- (b) Write a short note on interval estimation.
- (c) On the basis of a random sample find the maximum likelihood method of estimation of a Poisson distribution.

1

 $5 \times 3 = 15$ 

 $1 \times 5 = 5$ 

#### UG/CBCS/B.Sc./Programme/4th Sem./Statistics/STADSC4/2023

(d) If  $x_1, x_2, \dots, x_n$  are random observations on a Bernoulli variate X taking value 1 with probability p and the value 0 with probability (1 - p), show that

$$\frac{\sum_{i=1}^{n} x_i}{n} \left( 1 - \frac{\sum_{i=1}^{n} x_i}{n} \right)$$
 is a consistent estimator of  $p(1-p)$ .

(e) Consider the normal (μ, σ) population, where σ is known. Find the best critical region for testing H<sub>0</sub>: μ = μ<sub>0</sub> vs H<sub>1</sub>: μ > μ<sub>0</sub> on the basis of the random sample X<sub>1</sub>, X<sub>2</sub>,...., X<sub>n</sub> of size n.

#### **GROUP-C**

3. Answer any *two* from the following:

 $10 \times 2 = 20$ 

- (a) Let  $X_1, X_2, \dots, X_{n_1}$  and  $Y_1, Y_2, \dots, Y_{n_2}$  be independent random samples from  $N(\mu_1, \sigma_1^2)$  and  $N(\mu_2, \sigma_2^2)$  respectively. Find  $100(1-\alpha)\%$  confidence interval for  $(\mu_1 \mu_2)$  when both  $\sigma_1^2$  and  $\sigma_2^2$  are unknown but  $\sigma_1^2 = \sigma_2^2 = \sigma^2$ .
- (b) What is unbiased estimator? If  $X_1, X_2, \dots, X_n$  is a random sample from an infinite population with variance  $\sigma^2$  and  $\bar{x}$  is the sample mean, then show that  $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$  is an unbiased estimator of  $\sigma^2$ .
- (c) What is Cramer-Rao inequality? Let  $X_1, X_2, \dots, X_n$  be a random sample drawn from  $N(\mu, \sigma^2)$ , where the parameter  $\sigma^2$  known. Prove that  $\bar{x}$  is a minimum variance bound estimator for  $\mu$ .
- (d) What is maximum likelihood method of estimation? In random sampling from normal population  $N(\mu, \sigma^2)$  find the maximum likelihood method of estimator for the simultaneous estimation of  $\mu$  and  $\sigma^2$ .

\_×\_\_\_